168 lines
7.0 KiB
Python
168 lines
7.0 KiB
Python
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
from matcha.models.components.flow_matching import BASECFM
|
||
|
|
||
|
import os, sys
|
||
|
sys.path.insert(0, os.path.abspath(r'E:\2_PYTHON\Project\GPT\QWen\CosyVoice\third_party\Matcha-TTS'))
|
||
|
|
||
|
class ConditionalCFM(BASECFM):
|
||
|
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
||
|
super().__init__(
|
||
|
n_feats=in_channels,
|
||
|
cfm_params=cfm_params,
|
||
|
n_spks=n_spks,
|
||
|
spk_emb_dim=spk_emb_dim,
|
||
|
)
|
||
|
self.t_scheduler = cfm_params.t_scheduler
|
||
|
self.training_cfg_rate = cfm_params.training_cfg_rate
|
||
|
self.inference_cfg_rate = cfm_params.inference_cfg_rate
|
||
|
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
|
||
|
# Just change the architecture of the estimator here
|
||
|
self.estimator = estimator
|
||
|
|
||
|
@torch.inference_mode()
|
||
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
|
||
|
"""Forward diffusion
|
||
|
|
||
|
Args:
|
||
|
mu (torch.Tensor): output of encoder
|
||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||
|
mask (torch.Tensor): output_mask
|
||
|
shape: (batch_size, 1, mel_timesteps)
|
||
|
n_timesteps (int): number of diffusion steps
|
||
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
||
|
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||
|
shape: (batch_size, spk_emb_dim)
|
||
|
cond: Not used but kept for future purposes
|
||
|
|
||
|
Returns:
|
||
|
sample: generated mel-spectrogram
|
||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||
|
"""
|
||
|
|
||
|
z = torch.randn_like(mu) * temperature
|
||
|
cache_size = flow_cache.shape[2]
|
||
|
# fix prompt and overlap part mu and z
|
||
|
if cache_size != 0:
|
||
|
z[:, :, :cache_size] = flow_cache[:, :, :, 0]
|
||
|
mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
|
||
|
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
|
||
|
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
|
||
|
flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
|
||
|
|
||
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
||
|
if self.t_scheduler == 'cosine':
|
||
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||
|
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
|
||
|
|
||
|
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
||
|
"""
|
||
|
Fixed euler solver for ODEs.
|
||
|
Args:
|
||
|
x (torch.Tensor): random noise
|
||
|
t_span (torch.Tensor): n_timesteps interpolated
|
||
|
shape: (n_timesteps + 1,)
|
||
|
mu (torch.Tensor): output of encoder
|
||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||
|
mask (torch.Tensor): output_mask
|
||
|
shape: (batch_size, 1, mel_timesteps)
|
||
|
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
||
|
shape: (batch_size, spk_emb_dim)
|
||
|
cond: Not used but kept for future purposes
|
||
|
"""
|
||
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||
|
t = t.unsqueeze(dim=0)
|
||
|
|
||
|
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||
|
# Or in future might add like a return_all_steps flag
|
||
|
sol = []
|
||
|
|
||
|
for step in range(1, len(t_span)):
|
||
|
dphi_dt = self.forward_estimator(x, mask, mu, t, spks, cond)
|
||
|
# Classifier-Free Guidance inference introduced in VoiceBox
|
||
|
if self.inference_cfg_rate > 0:
|
||
|
cfg_dphi_dt = self.forward_estimator(
|
||
|
x, mask,
|
||
|
torch.zeros_like(mu), t,
|
||
|
torch.zeros_like(spks) if spks is not None else None,
|
||
|
torch.zeros_like(cond)
|
||
|
)
|
||
|
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt -
|
||
|
self.inference_cfg_rate * cfg_dphi_dt)
|
||
|
x = x + dt * dphi_dt
|
||
|
t = t + dt
|
||
|
sol.append(x)
|
||
|
if step < len(t_span) - 1:
|
||
|
dt = t_span[step + 1] - t
|
||
|
|
||
|
return sol[-1]
|
||
|
|
||
|
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
||
|
if isinstance(self.estimator, torch.nn.Module):
|
||
|
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
||
|
else:
|
||
|
ort_inputs = {
|
||
|
'x': x.cpu().numpy(),
|
||
|
'mask': mask.cpu().numpy(),
|
||
|
'mu': mu.cpu().numpy(),
|
||
|
't': t.cpu().numpy(),
|
||
|
'spks': spks.cpu().numpy(),
|
||
|
'cond': cond.cpu().numpy()
|
||
|
}
|
||
|
output = self.estimator.run(None, ort_inputs)[0]
|
||
|
return torch.tensor(output, dtype=x.dtype, device=x.device)
|
||
|
|
||
|
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
||
|
"""Computes diffusion loss
|
||
|
|
||
|
Args:
|
||
|
x1 (torch.Tensor): Target
|
||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||
|
mask (torch.Tensor): target mask
|
||
|
shape: (batch_size, 1, mel_timesteps)
|
||
|
mu (torch.Tensor): output of encoder
|
||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||
|
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
|
||
|
shape: (batch_size, spk_emb_dim)
|
||
|
|
||
|
Returns:
|
||
|
loss: conditional flow matching loss
|
||
|
y: conditional flow
|
||
|
shape: (batch_size, n_feats, mel_timesteps)
|
||
|
"""
|
||
|
b, _, t = mu.shape
|
||
|
|
||
|
# random timestep
|
||
|
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
|
||
|
if self.t_scheduler == 'cosine':
|
||
|
t = 1 - torch.cos(t * 0.5 * torch.pi)
|
||
|
# sample noise p(x_0)
|
||
|
z = torch.randn_like(x1)
|
||
|
|
||
|
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
|
||
|
u = x1 - (1 - self.sigma_min) * z
|
||
|
|
||
|
# during training, we randomly drop condition to trade off mode coverage and sample fidelity
|
||
|
if self.training_cfg_rate > 0:
|
||
|
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
|
||
|
mu = mu * cfg_mask.view(-1, 1, 1)
|
||
|
spks = spks * cfg_mask.view(-1, 1)
|
||
|
cond = cond * cfg_mask.view(-1, 1, 1)
|
||
|
|
||
|
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
||
|
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
||
|
return loss, y
|