111 lines
4.0 KiB
Bash
111 lines
4.0 KiB
Bash
#!/bin/bash
|
|
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
|
. ./path.sh || exit 1;
|
|
|
|
stage=-1
|
|
stop_stage=3
|
|
|
|
data_url=www.openslr.org/resources/68
|
|
data_dir=/mnt/hengwu.zty/data/tts/openslr/magicdata-read
|
|
pretrained_model_dir=../../../pretrained_models/CosyVoice-300M
|
|
|
|
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
|
echo "Data Download"
|
|
for part in dev_set test_set train_set; do
|
|
local/download_and_untar.sh ${data_dir} ${data_url} ${part}
|
|
done
|
|
fi
|
|
|
|
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
|
echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
|
|
for x in dev test train; do
|
|
mkdir -p data/$x
|
|
python local/prepare_data.py --src_dir $data_dir/$x --des_dir data/$x
|
|
done
|
|
fi
|
|
|
|
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
|
echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
|
|
for x in dev test train; do
|
|
tools/extract_embedding.py --dir data/$x \
|
|
--onnx_path $pretrained_model_dir/campplus.onnx
|
|
done
|
|
fi
|
|
|
|
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
|
echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
|
|
for x in dev test train; do
|
|
tools/extract_speech_token.py --dir data/$x \
|
|
--onnx_path $pretrained_model_dir/speech_tokenizer_v1.onnx
|
|
done
|
|
fi
|
|
|
|
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
|
echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
|
|
for x in dev test train; do
|
|
mkdir -p data/$x/parquet
|
|
tools/make_parquet_list.py --num_utts_per_parquet 1000 \
|
|
--num_processes 10 \
|
|
--src_dir data/$x \
|
|
--des_dir data/$x/parquet
|
|
done
|
|
fi
|
|
|
|
# inference
|
|
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
|
echo "Run inference. Please make sure utt in tts_text is in prompt_data"
|
|
for mode in sft zero_shot; do
|
|
python cosyvoice/bin/inference.py --mode $mode \
|
|
--gpu 0 \
|
|
--config conf/cosyvoice.yaml \
|
|
--prompt_data data/test/parquet/data.list \
|
|
--prompt_utt2data data/test/parquet/utt2data.list \
|
|
--tts_text `pwd`/tts_text.json \
|
|
--llm_model $pretrained_model_dir/llm.pt \
|
|
--flow_model $pretrained_model_dir/flow.pt \
|
|
--hifigan_model $pretrained_model_dir/hift.pt \
|
|
--result_dir `pwd`/exp/cosyvoice/test/$mode
|
|
done
|
|
fi
|
|
|
|
# train llm
|
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
|
num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
|
job_id=1986
|
|
dist_backend="nccl"
|
|
num_workers=2
|
|
prefetch=100
|
|
train_engine=torch_ddp
|
|
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
|
echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml"
|
|
if [ $train_engine == 'deepspeed' ]; then
|
|
echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
|
|
fi
|
|
cp data/train/parquet/data.list data/train.data.list
|
|
cp data/dev/parquet/data.list data/dev.data.list
|
|
for model in llm flow; do
|
|
torchrun --nnodes=1 --nproc_per_node=$num_gpus \
|
|
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:0" \
|
|
cosyvoice/bin/train.py \
|
|
--train_engine $train_engine \
|
|
--config conf/cosyvoice.yaml \
|
|
--train_data data/train.data.list \
|
|
--cv_data data/dev.data.list \
|
|
--model $model \
|
|
--checkpoint $pretrained_model_dir/$model.pt \
|
|
--model_dir `pwd`/exp/cosyvoice/$model/$train_engine \
|
|
--tensorboard_dir `pwd`/tensorboard/cosyvoice/$model/$train_engine \
|
|
--ddp.dist_backend $dist_backend \
|
|
--num_workers ${num_workers} \
|
|
--prefetch ${prefetch} \
|
|
--pin_memory \
|
|
--deepspeed_config ./conf/ds_stage2.json \
|
|
--deepspeed.save_states model+optimizer
|
|
done
|
|
fi
|
|
|
|
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
|
echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
|
|
python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
|
|
python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
|
|
fi |