ComfyUI/nodes.py

1303 lines
47 KiB
Python
Raw Normal View History

2023-01-03 06:53:32 +00:00
import torch
import os
import sys
import json
import hashlib
import traceback
import math
2023-01-03 06:53:32 +00:00
from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np
2023-04-06 06:57:31 +00:00
2023-03-06 19:41:42 +00:00
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
2023-01-03 06:53:32 +00:00
2023-04-07 06:29:56 +00:00
import comfy.diffusers_convert
2023-01-03 06:53:32 +00:00
import comfy.samplers
import comfy.sample
2023-01-03 06:53:32 +00:00
import comfy.sd
2023-02-16 15:38:08 +00:00
import comfy.utils
import comfy.clip_vision
import comfy.model_management
2023-02-15 14:48:10 +00:00
import importlib
2023-01-03 06:53:32 +00:00
import folder_paths
def before_node_execution():
comfy.model_management.throw_exception_if_processing_interrupted()
def interrupt_processing(value=True):
comfy.model_management.interrupt_current_processing(value)
MAX_RESOLUTION=8192
2023-01-03 06:53:32 +00:00
class CLIPTextEncode:
@classmethod
def INPUT_TYPES(s):
2023-03-03 18:28:34 +00:00
return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
2023-01-26 17:23:15 +00:00
CATEGORY = "conditioning"
2023-01-03 06:53:32 +00:00
def encode(self, clip, text):
return ([[clip.encode(text), {}]], )
class ConditioningCombine:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "combine"
2023-01-26 17:23:15 +00:00
CATEGORY = "conditioning"
def combine(self, conditioning_1, conditioning_2):
return (conditioning_1 + conditioning_2, )
class ConditioningAverage :
@classmethod
def INPUT_TYPES(s):
2023-04-30 21:28:55 +00:00
return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
"conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "addWeighted"
CATEGORY = "conditioning"
2023-04-30 21:28:55 +00:00
def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
out = []
2023-04-30 21:28:55 +00:00
if len(conditioning_from) > 1:
print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
cond_from = conditioning_from[0][0]
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
t0 = cond_from[:,:t1.shape[1]]
if t0.shape[1] < t1.shape[1]:
t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)
tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
n = [tw, conditioning_to[i][1].copy()]
out.append(n)
return (out, )
class ConditioningSetArea:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
2023-05-02 18:16:27 +00:00
"width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
2023-01-26 17:23:15 +00:00
CATEGORY = "conditioning"
def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
2023-02-16 15:38:08 +00:00
c = []
for t in conditioning:
n = [t[0], t[1].copy()]
n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
n[1]['strength'] = strength
n[1]['set_area_to_bounds'] = False
2023-02-16 15:38:08 +00:00
n[1]['min_sigma'] = min_sigma
n[1]['max_sigma'] = max_sigma
c.append(n)
return (c, )
2023-01-03 06:53:32 +00:00
class ConditioningSetMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"mask": ("MASK", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, conditioning, mask, set_cond_area, strength):
c = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask.shape) < 3:
mask = mask.unsqueeze(0)
for t in conditioning:
n = [t[0], t[1].copy()]
_, h, w = mask.shape
n[1]['mask'] = mask
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
return (c, )
2023-01-03 06:53:32 +00:00
class VAEDecode:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
2023-01-26 17:23:15 +00:00
CATEGORY = "latent"
2023-01-03 06:53:32 +00:00
def decode(self, vae, samples):
return (vae.decode(samples["samples"]), )
2023-01-03 06:53:32 +00:00
class VAEDecodeTiled:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
CATEGORY = "_for_testing"
def decode(self, vae, samples):
return (vae.decode_tiled(samples["samples"]), )
2023-01-03 06:53:32 +00:00
class VAEEncode:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
2023-01-26 17:23:15 +00:00
CATEGORY = "latent"
2023-05-02 18:16:27 +00:00
@staticmethod
def vae_encode_crop_pixels(pixels):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
if pixels.shape[1] != x or pixels.shape[2] != y:
2023-05-02 18:16:27 +00:00
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
return pixels
2023-05-02 18:16:27 +00:00
def encode(self, vae, pixels):
pixels = self.vae_encode_crop_pixels(pixels)
t = vae.encode(pixels[:,:,:,:3])
return ({"samples":t}, )
2023-01-03 06:53:32 +00:00
2023-03-11 20:28:15 +00:00
class VAEEncodeTiled:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "_for_testing"
def encode(self, vae, pixels):
2023-05-02 18:16:27 +00:00
pixels = VAEEncode.vae_encode_crop_pixels(pixels)
2023-03-11 20:28:15 +00:00
t = vae.encode_tiled(pixels[:,:,:,:3])
return ({"samples":t}, )
2023-05-02 18:16:27 +00:00
class VAEEncodeForInpaint:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "latent/inpaint"
def encode(self, vae, pixels, mask, grow_mask_by=6):
2023-05-02 18:16:27 +00:00
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
2023-04-25 05:12:40 +00:00
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
2023-02-27 17:02:23 +00:00
pixels = pixels.clone()
if pixels.shape[1] != x or pixels.shape[2] != y:
2023-05-02 18:16:27 +00:00
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
2023-02-27 17:02:23 +00:00
#grow mask by a few pixels to keep things seamless in latent space
if grow_mask_by == 0:
mask_erosion = mask
else:
kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
padding = math.ceil((grow_mask_by - 1) / 2)
mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)
m = (1.0 - mask.round()).squeeze(1)
for i in range(3):
pixels[:,:,:,i] -= 0.5
2023-02-27 17:02:23 +00:00
pixels[:,:,:,i] *= m
pixels[:,:,:,i] += 0.5
t = vae.encode(pixels)
2023-04-25 05:12:40 +00:00
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
2023-01-03 06:53:32 +00:00
class CheckpointLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "load_checkpoint"
2023-04-05 02:48:11 +00:00
CATEGORY = "advanced/loaders"
2023-01-26 17:23:15 +00:00
2023-01-03 06:53:32 +00:00
def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
config_path = folder_paths.get_full_path("configs", config_name)
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
2023-03-18 07:08:43 +00:00
return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
2023-01-03 06:53:32 +00:00
class CheckpointLoaderSimple:
@classmethod
def INPUT_TYPES(s):
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
}}
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "load_checkpoint"
CATEGORY = "loaders"
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
2023-03-18 07:08:43 +00:00
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
return out
2023-04-06 06:57:31 +00:00
class DiffusersLoader:
@classmethod
def INPUT_TYPES(cls):
paths = []
2023-04-07 05:02:26 +00:00
for search_path in folder_paths.get_folder_paths("diffusers"):
2023-04-07 04:48:58 +00:00
if os.path.exists(search_path):
2023-04-07 05:02:26 +00:00
paths += next(os.walk(search_path))[1]
return {"required": {"model_path": (paths,), }}
2023-04-06 06:57:31 +00:00
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "load_checkpoint"
CATEGORY = "advanced/loaders"
2023-04-06 06:57:31 +00:00
def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
2023-04-07 05:02:26 +00:00
for search_path in folder_paths.get_folder_paths("diffusers"):
if os.path.exists(search_path):
paths = next(os.walk(search_path))[1]
if model_path in paths:
model_path = os.path.join(search_path, model_path)
break
return comfy.diffusers_convert.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
2023-04-06 06:57:31 +00:00
class unCLIPCheckpointLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
}}
RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
FUNCTION = "load_checkpoint"
2023-04-05 02:48:11 +00:00
CATEGORY = "loaders"
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
return out
class CLIPSetLastLayer:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip": ("CLIP", ),
"stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "set_last_layer"
CATEGORY = "conditioning"
def set_last_layer(self, clip, stop_at_clip_layer):
clip = clip.clone()
clip.clip_layer(stop_at_clip_layer)
return (clip,)
class LoraLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"clip": ("CLIP", ),
"lora_name": (folder_paths.get_filename_list("loras"), ),
2023-03-26 01:31:39 +00:00
"strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL", "CLIP")
FUNCTION = "load_lora"
CATEGORY = "loaders"
def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
lora_path = folder_paths.get_full_path("loras", lora_name)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
return (model_lora, clip_lora)
class TomePatchModel:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing"
def patch(self, model, ratio):
m = model.clone()
m.set_model_tomesd(ratio)
return (m, )
2023-01-03 06:53:32 +00:00
class VAELoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("VAE",)
FUNCTION = "load_vae"
2023-01-26 17:23:15 +00:00
CATEGORY = "loaders"
2023-01-03 06:53:32 +00:00
#TODO: scale factor?
def load_vae(self, vae_name):
vae_path = folder_paths.get_full_path("vae", vae_name)
2023-01-03 06:53:32 +00:00
vae = comfy.sd.VAE(ckpt_path=vae_path)
return (vae,)
2023-02-16 15:38:08 +00:00
class ControlNetLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
2023-02-16 15:38:08 +00:00
RETURN_TYPES = ("CONTROL_NET",)
FUNCTION = "load_controlnet"
CATEGORY = "loaders"
def load_controlnet(self, control_net_name):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
2023-02-16 15:38:08 +00:00
controlnet = comfy.sd.load_controlnet(controlnet_path)
return (controlnet,)
2023-02-23 04:22:03 +00:00
class DiffControlNetLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
2023-02-23 04:22:03 +00:00
RETURN_TYPES = ("CONTROL_NET",)
FUNCTION = "load_controlnet"
CATEGORY = "loaders"
def load_controlnet(self, model, control_net_name):
controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
2023-02-23 04:22:03 +00:00
controlnet = comfy.sd.load_controlnet(controlnet_path, model)
return (controlnet,)
2023-02-16 15:38:08 +00:00
class ControlNetApply:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
}}
2023-02-16 15:38:08 +00:00
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_controlnet"
CATEGORY = "conditioning"
def apply_controlnet(self, conditioning, control_net, image, strength):
2023-02-16 15:38:08 +00:00
c = []
control_hint = image.movedim(-1,1)
print(control_hint.shape)
for t in conditioning:
n = [t[0], t[1].copy()]
c_net = control_net.copy().set_cond_hint(control_hint, strength)
if 'control' in t[1]:
c_net.set_previous_controlnet(t[1]['control'])
n[1]['control'] = c_net
2023-02-16 15:38:08 +00:00
c.append(n)
return (c, )
class CLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
CATEGORY = "loaders"
def load_clip(self, clip_name):
clip_path = folder_paths.get_full_path("clip", clip_name)
2023-03-21 07:11:18 +00:00
clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
return (clip,)
class CLIPVisionLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
}}
RETURN_TYPES = ("CLIP_VISION",)
FUNCTION = "load_clip"
CATEGORY = "loaders"
def load_clip(self, clip_name):
clip_path = folder_paths.get_full_path("clip_vision", clip_name)
clip_vision = comfy.clip_vision.load(clip_path)
return (clip_vision,)
class CLIPVisionEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_vision": ("CLIP_VISION",),
"image": ("IMAGE",)
}}
2023-03-06 06:30:17 +00:00
RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
FUNCTION = "encode"
CATEGORY = "conditioning"
def encode(self, clip_vision, image):
output = clip_vision.encode_image(image)
return (output,)
class StyleModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
RETURN_TYPES = ("STYLE_MODEL",)
FUNCTION = "load_style_model"
CATEGORY = "loaders"
def load_style_model(self, style_model_name):
style_model_path = folder_paths.get_full_path("style_models", style_model_name)
style_model = comfy.sd.load_style_model(style_model_path)
return (style_model,)
class StyleModelApply:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"style_model": ("STYLE_MODEL", ),
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_stylemodel"
2023-03-06 06:30:17 +00:00
CATEGORY = "conditioning/style_model"
def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
cond = style_model.get_cond(clip_vision_output)
c = []
for t in conditioning:
n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
c.append(n)
return (c, )
class unCLIPConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_adm"
2023-04-05 02:48:11 +00:00
CATEGORY = "conditioning"
def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
c = []
for t in conditioning:
o = t[1].copy()
x = (clip_vision_output, strength, noise_augmentation)
if "adm" in o:
o["adm"] = o["adm"][:] + [x]
else:
o["adm"] = [x]
n = [t[0], o]
c.append(n)
return (c, )
2023-04-19 13:36:19 +00:00
class GLIGENLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}
RETURN_TYPES = ("GLIGEN",)
FUNCTION = "load_gligen"
2023-04-20 21:30:10 +00:00
CATEGORY = "loaders"
2023-04-19 13:36:19 +00:00
def load_gligen(self, gligen_name):
gligen_path = folder_paths.get_full_path("gligen", gligen_name)
gligen = comfy.sd.load_gligen(gligen_path)
return (gligen,)
class GLIGENTextBoxApply:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning_to": ("CONDITIONING", ),
"clip": ("CLIP", ),
"gligen_textbox_model": ("GLIGEN", ),
"text": ("STRING", {"multiline": True}),
"width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
2023-04-20 21:30:10 +00:00
CATEGORY = "conditioning/gligen"
2023-04-19 13:36:19 +00:00
def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
c = []
cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
for t in conditioning_to:
n = [t[0], t[1].copy()]
position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
prev = []
if "gligen" in n[1]:
prev = n[1]['gligen'][2]
n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
c.append(n)
return (c, )
2023-01-03 06:53:32 +00:00
class EmptyLatentImage:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
2023-05-02 18:16:27 +00:00
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
2023-01-03 06:53:32 +00:00
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
2023-01-26 17:23:15 +00:00
CATEGORY = "latent"
2023-01-03 06:53:32 +00:00
def generate(self, width, height, batch_size=1):
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return ({"samples":latent}, )
2023-01-03 06:53:32 +00:00
2023-02-16 15:38:08 +00:00
class LatentFromBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "rotate"
CATEGORY = "latent"
def rotate(self, samples, batch_index):
s = samples.copy()
s_in = samples["samples"]
batch_index = min(s_in.shape[0] - 1, batch_index)
s["samples"] = s_in[batch_index:batch_index + 1].clone()
s["batch_index"] = batch_index
return (s,)
2023-01-03 06:53:32 +00:00
class LatentUpscale:
upscale_methods = ["nearest-exact", "bilinear", "area"]
crop_methods = ["disabled", "center"]
2023-01-03 06:53:32 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
2023-05-02 18:16:27 +00:00
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"crop": (s.crop_methods,)}}
2023-01-03 06:53:32 +00:00
RETURN_TYPES = ("LATENT",)
FUNCTION = "upscale"
CATEGORY = "latent"
def upscale(self, samples, upscale_method, width, height, crop):
s = samples.copy()
2023-02-16 15:38:08 +00:00
s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
2023-01-03 06:53:32 +00:00
return (s,)
2023-01-31 07:28:07 +00:00
class LatentRotate:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "rotate"
2023-03-06 06:30:17 +00:00
CATEGORY = "latent/transform"
2023-01-31 07:28:07 +00:00
def rotate(self, samples, rotation):
s = samples.copy()
2023-01-31 07:28:07 +00:00
rotate_by = 0
if rotation.startswith("90"):
rotate_by = 1
elif rotation.startswith("180"):
rotate_by = 2
elif rotation.startswith("270"):
rotate_by = 3
s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
2023-01-31 07:28:07 +00:00
return (s,)
2023-01-31 08:28:38 +00:00
class LatentFlip:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "flip"
2023-03-06 06:30:17 +00:00
CATEGORY = "latent/transform"
2023-01-31 08:28:38 +00:00
def flip(self, samples, flip_method):
s = samples.copy()
2023-01-31 08:28:38 +00:00
if flip_method.startswith("x"):
s["samples"] = torch.flip(samples["samples"], dims=[2])
2023-01-31 08:28:38 +00:00
elif flip_method.startswith("y"):
s["samples"] = torch.flip(samples["samples"], dims=[3])
2023-01-31 08:28:38 +00:00
return (s,)
class LatentComposite:
@classmethod
def INPUT_TYPES(s):
2023-04-14 04:14:35 +00:00
return {"required": { "samples_to": ("LATENT",),
"samples_from": ("LATENT",),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "composite"
CATEGORY = "latent"
2023-04-14 04:14:35 +00:00
def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
x = x // 8
y = y // 8
feather = feather // 8
2023-04-14 04:14:35 +00:00
samples_out = samples_to.copy()
s = samples_to["samples"].clone()
samples_to = samples_to["samples"]
samples_from = samples_from["samples"]
if feather == 0:
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
else:
samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
mask = torch.ones_like(samples_from)
for t in range(feather):
if y != 0:
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
if y + samples_from.shape[2] < samples_to.shape[2]:
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
if x != 0:
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
if x + samples_from.shape[3] < samples_to.shape[3]:
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
rev_mask = torch.ones_like(mask) - mask
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
samples_out["samples"] = s
return (samples_out,)
2023-02-04 20:21:46 +00:00
class LatentCrop:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
2023-05-02 18:16:27 +00:00
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
2023-02-04 20:21:46 +00:00
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "crop"
2023-03-06 06:30:17 +00:00
CATEGORY = "latent/transform"
2023-02-04 20:21:46 +00:00
def crop(self, samples, width, height, x, y):
s = samples.copy()
samples = samples['samples']
2023-02-04 20:21:46 +00:00
x = x // 8
y = y // 8
#enfonce minimum size of 64
if x > (samples.shape[3] - 8):
x = samples.shape[3] - 8
if y > (samples.shape[2] - 8):
y = samples.shape[2] - 8
new_height = height // 8
new_width = width // 8
to_x = new_width + x
to_y = new_height + y
s['samples'] = samples[:,:,y:to_y, x:to_x]
2023-02-04 20:21:46 +00:00
return (s,)
class SetLatentNoiseMask:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"mask": ("MASK",),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "set_mask"
CATEGORY = "latent/inpaint"
def set_mask(self, samples, mask):
s = samples.copy()
s["noise_mask"] = mask
return (s,)
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
device = comfy.model_management.get_torch_device()
latent_image = latent["samples"]
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
2023-04-24 10:53:10 +00:00
skip = latent["batch_index"] if "batch_index" in latent else 0
noise = comfy.sample.prepare_noise(latent_image, seed, skip)
2023-04-24 10:53:10 +00:00
noise_mask = None
if "noise_mask" in latent:
2023-04-25 03:25:51 +00:00
noise_mask = latent["noise_mask"]
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
pbar.update_absolute(step + 1, total_steps)
2023-04-25 03:25:51 +00:00
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
out = latent.copy()
out["samples"] = samples
return (out, )
2023-01-03 06:53:32 +00:00
class KSampler:
@classmethod
def INPUT_TYPES(s):
return {"required":
2023-01-03 06:53:32 +00:00
{"model": ("MODEL",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
2023-01-26 17:23:15 +00:00
CATEGORY = "sampling"
2023-01-03 06:53:32 +00:00
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
2023-01-03 06:53:32 +00:00
class KSamplerAdvanced:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"add_noise": (["enable", "disable"], ),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"return_with_leftover_noise": (["disable", "enable"], ),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
CATEGORY = "sampling"
2023-01-03 06:53:32 +00:00
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
force_full_denoise = True
if return_with_leftover_noise == "enable":
force_full_denoise = False
disable_noise = False
if add_noise == "disable":
disable_noise = True
return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
2023-01-03 06:53:32 +00:00
class SaveImage:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
2023-03-19 11:54:29 +00:00
self.type = "output"
2023-01-03 06:53:32 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required":
2023-01-24 07:17:18 +00:00
{"images": ("IMAGE", ),
2023-03-14 19:42:28 +00:00
"filename_prefix": ("STRING", {"default": "ComfyUI"})},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
2023-01-03 06:53:32 +00:00
}
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
2023-01-26 17:23:15 +00:00
CATEGORY = "image"
2023-03-14 19:42:28 +00:00
def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
2023-01-24 07:17:18 +00:00
def map_filename(filename):
prefix_len = len(os.path.basename(filename_prefix))
2023-01-24 07:17:18 +00:00
prefix = filename[:prefix_len + 1]
try:
digits = int(filename[prefix_len + 1:].split('_')[0])
except:
digits = 0
return (digits, prefix)
2023-03-26 19:16:52 +00:00
def compute_vars(input):
input = input.replace("%width%", str(images[0].shape[1]))
input = input.replace("%height%", str(images[0].shape[0]))
return input
2023-03-26 19:16:52 +00:00
filename_prefix = compute_vars(filename_prefix)
2023-03-20 18:55:28 +00:00
2023-03-16 18:48:59 +00:00
subfolder = os.path.dirname(os.path.normpath(filename_prefix))
filename = os.path.basename(os.path.normpath(filename_prefix))
2023-03-20 18:55:28 +00:00
full_output_folder = os.path.join(self.output_dir, subfolder)
if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
print("Saving image outside the output folder is not allowed.")
2023-03-20 18:55:28 +00:00
return {}
2023-01-24 07:17:18 +00:00
try:
counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
2023-01-24 07:17:18 +00:00
except ValueError:
counter = 1
2023-02-09 17:32:23 +00:00
except FileNotFoundError:
os.makedirs(full_output_folder, exist_ok=True)
2023-02-09 17:32:23 +00:00
counter = 1
2023-03-19 11:54:29 +00:00
results = list()
2023-01-03 06:53:32 +00:00
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
2023-01-03 06:53:32 +00:00
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
2023-03-15 10:48:15 +00:00
file = f"{filename}_{counter:05}_.png"
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
2023-03-19 11:54:29 +00:00
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
2023-04-13 20:38:02 +00:00
})
2023-01-24 07:17:18 +00:00
counter += 1
2023-03-20 18:55:28 +00:00
2023-03-19 11:54:29 +00:00
return { "ui": { "images": results } }
2023-01-03 06:53:32 +00:00
2023-03-14 19:28:07 +00:00
class PreviewImage(SaveImage):
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
2023-03-19 11:54:29 +00:00
self.type = "temp"
2023-03-14 19:28:07 +00:00
@classmethod
def INPUT_TYPES(s):
return {"required":
2023-03-14 19:28:07 +00:00
{"images": ("IMAGE", ), },
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
class LoadImage:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
return {"required":
{"image": (sorted(os.listdir(input_dir)), )},
}
2023-01-26 17:23:15 +00:00
CATEGORY = "image"
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "load_image"
def load_image(self, image):
image_path = folder_paths.get_annotated_filepath(image)
i = Image.open(image_path)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
return (image, mask)
@classmethod
def IS_CHANGED(s, image):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
2023-03-09 18:18:08 +00:00
@classmethod
def VALIDATE_INPUTS(s, image):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True
class LoadImageMask:
_color_channels = ["alpha", "red", "green", "blue"]
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
return {"required":
{"image": (sorted(os.listdir(input_dir)), ),
"channel": (s._color_channels, ),}
}
CATEGORY = "mask"
RETURN_TYPES = ("MASK",)
FUNCTION = "load_image"
def load_image(self, image, channel):
image_path = folder_paths.get_annotated_filepath(image)
i = Image.open(image_path)
if i.getbands() != ("R", "G", "B", "A"):
i = i.convert("RGBA")
mask = None
c = channel[0].upper()
if c in i.getbands():
mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
mask = torch.from_numpy(mask)
if c == 'A':
mask = 1. - mask
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
return (mask,)
@classmethod
def IS_CHANGED(s, image, channel):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
2023-03-09 18:18:08 +00:00
@classmethod
def VALIDATE_INPUTS(s, image, channel):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
if channel not in s._color_channels:
return "Invalid color channel: {}".format(channel)
return True
class ImageScale:
upscale_methods = ["nearest-exact", "bilinear", "area"]
crop_methods = ["disabled", "center"]
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"crop": (s.crop_methods,)}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "upscale"
CATEGORY = "image/upscaling"
def upscale(self, image, upscale_method, width, height, crop):
samples = image.movedim(-1,1)
2023-02-16 15:38:08 +00:00
s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
s = s.movedim(1,-1)
return (s,)
2023-01-03 06:53:32 +00:00
class ImageInvert:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",)}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "invert"
CATEGORY = "image"
def invert(self, image):
s = 1.0 - image
return (s,)
2023-03-23 15:33:35 +00:00
class ImagePadForOutpaint:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
2023-05-02 18:16:27 +00:00
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
2023-03-25 08:49:58 +00:00
"feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
2023-03-23 15:33:35 +00:00
}
}
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "expand_image"
CATEGORY = "image"
def expand_image(self, image, left, top, right, bottom, feathering):
2023-03-23 15:33:35 +00:00
d1, d2, d3, d4 = image.size()
new_image = torch.zeros(
(d1, d2 + top + bottom, d3 + left + right, d4),
dtype=torch.float32,
)
new_image[:, top:top + d2, left:left + d3, :] = image
mask = torch.ones(
(d2 + top + bottom, d3 + left + right),
dtype=torch.float32,
)
t = torch.zeros(
(d2, d3),
dtype=torch.float32
)
if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
for i in range(d2):
for j in range(d3):
dt = i if top != 0 else d2
db = d2 - i if bottom != 0 else d2
dl = j if left != 0 else d3
dr = d3 - j if right != 0 else d3
d = min(dt, db, dl, dr)
if d >= feathering:
continue
v = (feathering - d) / feathering
t[i, j] = v * v
mask[top:top + d2, left:left + d3] = t
2023-03-23 15:33:35 +00:00
return (new_image, mask)
2023-01-03 06:53:32 +00:00
NODE_CLASS_MAPPINGS = {
"KSampler": KSampler,
"CheckpointLoaderSimple": CheckpointLoaderSimple,
2023-01-03 06:53:32 +00:00
"CLIPTextEncode": CLIPTextEncode,
"CLIPSetLastLayer": CLIPSetLastLayer,
2023-01-03 06:53:32 +00:00
"VAEDecode": VAEDecode,
"VAEEncode": VAEEncode,
"VAEEncodeForInpaint": VAEEncodeForInpaint,
2023-01-03 06:53:32 +00:00
"VAELoader": VAELoader,
"EmptyLatentImage": EmptyLatentImage,
"LatentUpscale": LatentUpscale,
"LatentFromBatch": LatentFromBatch,
2023-01-03 06:53:32 +00:00
"SaveImage": SaveImage,
2023-03-14 19:28:07 +00:00
"PreviewImage": PreviewImage,
"LoadImage": LoadImage,
"LoadImageMask": LoadImageMask,
"ImageScale": ImageScale,
"ImageInvert": ImageInvert,
2023-03-23 15:33:35 +00:00
"ImagePadForOutpaint": ImagePadForOutpaint,
"ConditioningAverage ": ConditioningAverage ,
"ConditioningCombine": ConditioningCombine,
"ConditioningSetArea": ConditioningSetArea,
"ConditioningSetMask": ConditioningSetMask,
"KSamplerAdvanced": KSamplerAdvanced,
"SetLatentNoiseMask": SetLatentNoiseMask,
"LatentComposite": LatentComposite,
2023-01-31 07:28:07 +00:00
"LatentRotate": LatentRotate,
2023-01-31 08:28:38 +00:00
"LatentFlip": LatentFlip,
2023-02-04 20:21:46 +00:00
"LatentCrop": LatentCrop,
"LoraLoader": LoraLoader,
"CLIPLoader": CLIPLoader,
"CLIPVisionEncode": CLIPVisionEncode,
"StyleModelApply": StyleModelApply,
"unCLIPConditioning": unCLIPConditioning,
2023-02-16 15:38:08 +00:00
"ControlNetApply": ControlNetApply,
"ControlNetLoader": ControlNetLoader,
2023-02-23 04:22:03 +00:00
"DiffControlNetLoader": DiffControlNetLoader,
2023-03-06 06:30:17 +00:00
"StyleModelLoader": StyleModelLoader,
"CLIPVisionLoader": CLIPVisionLoader,
"VAEDecodeTiled": VAEDecodeTiled,
2023-03-11 20:28:15 +00:00
"VAEEncodeTiled": VAEEncodeTiled,
"TomePatchModel": TomePatchModel,
"unCLIPCheckpointLoader": unCLIPCheckpointLoader,
2023-04-19 13:36:19 +00:00
"GLIGENLoader": GLIGENLoader,
"GLIGENTextBoxApply": GLIGENTextBoxApply,
2023-04-05 02:48:11 +00:00
"CheckpointLoader": CheckpointLoader,
2023-04-06 06:57:31 +00:00
"DiffusersLoader": DiffusersLoader,
2023-01-03 06:53:32 +00:00
}
2023-03-30 21:13:58 +00:00
NODE_DISPLAY_NAME_MAPPINGS = {
# Sampling
"KSampler": "KSampler",
"KSamplerAdvanced": "KSampler (Advanced)",
# Loaders
2023-04-08 19:53:01 +00:00
"CheckpointLoader": "Load Checkpoint (With Config)",
"CheckpointLoaderSimple": "Load Checkpoint",
2023-03-30 21:13:58 +00:00
"VAELoader": "Load VAE",
"LoraLoader": "Load LoRA",
"CLIPLoader": "Load CLIP",
"ControlNetLoader": "Load ControlNet Model",
"DiffControlNetLoader": "Load ControlNet Model (diff)",
"StyleModelLoader": "Load Style Model",
"CLIPVisionLoader": "Load CLIP Vision",
"UpscaleModelLoader": "Load Upscale Model",
# Conditioning
"CLIPVisionEncode": "CLIP Vision Encode",
"StyleModelApply": "Apply Style Model",
"CLIPTextEncode": "CLIP Text Encode (Prompt)",
"CLIPSetLastLayer": "CLIP Set Last Layer",
"ConditioningCombine": "Conditioning (Combine)",
"ConditioningAverage ": "Conditioning (Average)",
2023-03-30 21:13:58 +00:00
"ConditioningSetArea": "Conditioning (Set Area)",
"ConditioningSetMask": "Conditioning (Set Mask)",
2023-03-30 21:13:58 +00:00
"ControlNetApply": "Apply ControlNet",
# Latent
"VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
"SetLatentNoiseMask": "Set Latent Noise Mask",
"VAEDecode": "VAE Decode",
"VAEEncode": "VAE Encode",
"LatentRotate": "Rotate Latent",
"LatentFlip": "Flip Latent",
"LatentCrop": "Crop Latent",
"EmptyLatentImage": "Empty Latent Image",
"LatentUpscale": "Upscale Latent",
"LatentComposite": "Latent Composite",
# Image
"SaveImage": "Save Image",
"PreviewImage": "Preview Image",
"LoadImage": "Load Image",
"LoadImageMask": "Load Image (as Mask)",
"ImageScale": "Upscale Image",
"ImageUpscaleWithModel": "Upscale Image (using Model)",
"ImageInvert": "Invert Image",
"ImagePadForOutpaint": "Pad Image for Outpainting",
# _for_testing
"VAEDecodeTiled": "VAE Decode (Tiled)",
"VAEEncodeTiled": "VAE Encode (Tiled)",
}
def load_custom_node(module_path):
module_name = os.path.basename(module_path)
if os.path.isfile(module_path):
sp = os.path.splitext(module_path)
module_name = sp[0]
try:
if os.path.isfile(module_path):
module_spec = importlib.util.spec_from_file_location(module_name, module_path)
else:
module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
module = importlib.util.module_from_spec(module_spec)
sys.modules[module_name] = module
module_spec.loader.exec_module(module)
if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
else:
print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
except Exception as e:
print(traceback.format_exc())
print(f"Cannot import {module_path} module for custom nodes:", e)
2023-02-13 11:17:40 +00:00
def load_custom_nodes():
node_paths = folder_paths.get_folder_paths("custom_nodes")
for custom_node_path in node_paths:
possible_modules = os.listdir(custom_node_path)
if "__pycache__" in possible_modules:
possible_modules.remove("__pycache__")
for possible_module in possible_modules:
module_path = os.path.join(custom_node_path, possible_module)
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
load_custom_node(module_path)
def init_custom_nodes():
load_custom_nodes()
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))