add_optimalsteps (#7584)

Co-authored-by: bebebe666 <jianningpei@tencent.com>
This commit is contained in:
JNP 2025-04-13 08:33:36 +08:00 committed by GitHub
parent bb495cc9b8
commit 9ee6ca99d8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 57 additions and 0 deletions

View File

@ -0,0 +1,56 @@
# from https://github.com/bebebe666/OptimalSteps
import numpy as np
import torch
def loglinear_interp(t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
interped_ys = np.exp(new_ys)[::-1].copy()
return interped_ys
NOISE_LEVELS = {"FLUX": [0.9968, 0.9886, 0.9819, 0.975, 0.966, 0.9471, 0.9158, 0.8287, 0.5512, 0.2808, 0.001],
"Wan":[1.0, 0.997, 0.995, 0.993, 0.991, 0.989, 0.987, 0.985, 0.98, 0.975, 0.973, 0.968, 0.96, 0.946, 0.927, 0.902, 0.864, 0.776, 0.539, 0.208, 0.001],
}
class OptimalStepsScheduler:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model_type": (["FLUX", "Wan"], ),
"steps": ("INT", {"default": 20, "min": 3, "max": 1000}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("SIGMAS",)
CATEGORY = "sampling/custom_sampling/schedulers"
FUNCTION = "get_sigmas"
def get_sigmas(self, model_type, steps, denoise):
total_steps = steps
if denoise < 1.0:
if denoise <= 0.0:
return (torch.FloatTensor([]),)
total_steps = round(steps * denoise)
sigmas = NOISE_LEVELS[model_type][:]
if (steps + 1) != len(sigmas):
sigmas = loglinear_interp(sigmas, steps + 1)
sigmas = sigmas[-(total_steps + 1):]
sigmas[-1] = 0
return (torch.FloatTensor(sigmas), )
NODE_CLASS_MAPPINGS = {
"OptimalStepsScheduler": OptimalStepsScheduler,
}

View File

@ -2280,6 +2280,7 @@ def init_builtin_extra_nodes():
"nodes_hunyuan3d.py",
"nodes_primitive.py",
"nodes_cfg.py",
"nodes_optimalsteps.py"
]
import_failed = []