Invert the start and end percentages in the code.

This doesn't affect how percentages behave in the frontend but breaks
things if you relied on them in the backend.

percent_to_sigma goes from 0 to 1.0 instead of 1.0 to 0 for less confusion.

Make percent 0 return an extremely large sigma and percent 1.0 return a
zero one to fix imprecision.
This commit is contained in:
comfyanonymous 2023-11-16 04:07:35 -05:00
parent 7114cfec0e
commit dcec1047e6
5 changed files with 17 additions and 5 deletions

View File

@ -33,7 +33,7 @@ class ControlBase:
self.cond_hint_original = None self.cond_hint_original = None
self.cond_hint = None self.cond_hint = None
self.strength = 1.0 self.strength = 1.0
self.timestep_percent_range = (1.0, 0.0) self.timestep_percent_range = (0.0, 1.0)
self.timestep_range = None self.timestep_range = None
if device is None: if device is None:
@ -42,7 +42,7 @@ class ControlBase:
self.previous_controlnet = None self.previous_controlnet = None
self.global_average_pooling = False self.global_average_pooling = False
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)): def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)):
self.cond_hint_original = cond_hint self.cond_hint_original = cond_hint
self.strength = strength self.strength = strength
self.timestep_percent_range = timestep_percent_range self.timestep_percent_range = timestep_percent_range

View File

@ -76,5 +76,10 @@ class ModelSamplingDiscrete(torch.nn.Module):
return log_sigma.exp() return log_sigma.exp()
def percent_to_sigma(self, percent): def percent_to_sigma(self, percent):
if percent <= 0.0:
return torch.tensor(999999999.9)
if percent >= 1.0:
return torch.tensor(0.0)
percent = 1.0 - percent
return self.sigma(torch.tensor(percent * 999.0)) return self.sigma(torch.tensor(percent * 999.0))

View File

@ -220,6 +220,8 @@ def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_option
transformer_options["patches"] = patches transformer_options["patches"] = patches
transformer_options["cond_or_uncond"] = cond_or_uncond[:] transformer_options["cond_or_uncond"] = cond_or_uncond[:]
transformer_options["sigmas"] = timestep
c['transformer_options'] = transformer_options c['transformer_options'] = transformer_options
if 'model_function_wrapper' in model_options: if 'model_function_wrapper' in model_options:

View File

@ -66,6 +66,11 @@ class ModelSamplingDiscreteLCM(torch.nn.Module):
return log_sigma.exp() return log_sigma.exp()
def percent_to_sigma(self, percent): def percent_to_sigma(self, percent):
if percent <= 0.0:
return torch.tensor(999999999.9)
if percent >= 1.0:
return torch.tensor(0.0)
percent = 1.0 - percent
return self.sigma(torch.tensor(percent * 999.0)) return self.sigma(torch.tensor(percent * 999.0))

View File

@ -248,8 +248,8 @@ class ConditioningSetTimestepRange:
c = [] c = []
for t in conditioning: for t in conditioning:
d = t[1].copy() d = t[1].copy()
d['start_percent'] = 1.0 - start d['start_percent'] = start
d['end_percent'] = 1.0 - end d['end_percent'] = end
n = [t[0], d] n = [t[0], d]
c.append(n) c.append(n)
return (c, ) return (c, )
@ -685,7 +685,7 @@ class ControlNetApplyAdvanced:
if prev_cnet in cnets: if prev_cnet in cnets:
c_net = cnets[prev_cnet] c_net = cnets[prev_cnet]
else: else:
c_net = control_net.copy().set_cond_hint(control_hint, strength, (1.0 - start_percent, 1.0 - end_percent)) c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent))
c_net.set_previous_controlnet(prev_cnet) c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net cnets[prev_cnet] = c_net