mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 10:25:16 +00:00
266 lines
8.1 KiB
Python
266 lines
8.1 KiB
Python
import torch.nn as nn
|
|
|
|
|
|
def conv3x3(inplanes, outplanes, stride=1):
|
|
"""A simple wrapper for 3x3 convolution with padding.
|
|
|
|
Args:
|
|
inplanes (int): Channel number of inputs.
|
|
outplanes (int): Channel number of outputs.
|
|
stride (int): Stride in convolution. Default: 1.
|
|
"""
|
|
return nn.Conv2d(
|
|
inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False
|
|
)
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
"""Basic residual block used in the ResNetArcFace architecture.
|
|
|
|
Args:
|
|
inplanes (int): Channel number of inputs.
|
|
planes (int): Channel number of outputs.
|
|
stride (int): Stride in convolution. Default: 1.
|
|
downsample (nn.Module): The downsample module. Default: None.
|
|
"""
|
|
|
|
expansion = 1 # output channel expansion ratio
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
super(BasicBlock, self).__init__()
|
|
self.conv1 = conv3x3(inplanes, planes, stride)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.conv2 = conv3x3(planes, planes)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class IRBlock(nn.Module):
|
|
"""Improved residual block (IR Block) used in the ResNetArcFace architecture.
|
|
|
|
Args:
|
|
inplanes (int): Channel number of inputs.
|
|
planes (int): Channel number of outputs.
|
|
stride (int): Stride in convolution. Default: 1.
|
|
downsample (nn.Module): The downsample module. Default: None.
|
|
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
|
|
"""
|
|
|
|
expansion = 1 # output channel expansion ratio
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
|
|
super(IRBlock, self).__init__()
|
|
self.bn0 = nn.BatchNorm2d(inplanes)
|
|
self.conv1 = conv3x3(inplanes, inplanes)
|
|
self.bn1 = nn.BatchNorm2d(inplanes)
|
|
self.prelu = nn.PReLU()
|
|
self.conv2 = conv3x3(inplanes, planes, stride)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
self.use_se = use_se
|
|
if self.use_se:
|
|
self.se = SEBlock(planes)
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
out = self.bn0(x)
|
|
out = self.conv1(out)
|
|
out = self.bn1(out)
|
|
out = self.prelu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
if self.use_se:
|
|
out = self.se(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.prelu(out)
|
|
|
|
return out
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
"""Bottleneck block used in the ResNetArcFace architecture.
|
|
|
|
Args:
|
|
inplanes (int): Channel number of inputs.
|
|
planes (int): Channel number of outputs.
|
|
stride (int): Stride in convolution. Default: 1.
|
|
downsample (nn.Module): The downsample module. Default: None.
|
|
"""
|
|
|
|
expansion = 4 # output channel expansion ratio
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
super(Bottleneck, self).__init__()
|
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(
|
|
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False
|
|
)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.conv3 = nn.Conv2d(
|
|
planes, planes * self.expansion, kernel_size=1, bias=False
|
|
)
|
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class SEBlock(nn.Module):
|
|
"""The squeeze-and-excitation block (SEBlock) used in the IRBlock.
|
|
|
|
Args:
|
|
channel (int): Channel number of inputs.
|
|
reduction (int): Channel reduction ration. Default: 16.
|
|
"""
|
|
|
|
def __init__(self, channel, reduction=16):
|
|
super(SEBlock, self).__init__()
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(
|
|
1
|
|
) # pool to 1x1 without spatial information
|
|
self.fc = nn.Sequential(
|
|
nn.Linear(channel, channel // reduction),
|
|
nn.PReLU(),
|
|
nn.Linear(channel // reduction, channel),
|
|
nn.Sigmoid(),
|
|
)
|
|
|
|
def forward(self, x):
|
|
b, c, _, _ = x.size()
|
|
y = self.avg_pool(x).view(b, c)
|
|
y = self.fc(y).view(b, c, 1, 1)
|
|
return x * y
|
|
|
|
|
|
class ResNetArcFace(nn.Module):
|
|
"""ArcFace with ResNet architectures.
|
|
|
|
Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
|
|
|
|
Args:
|
|
block (str): Block used in the ArcFace architecture.
|
|
layers (tuple(int)): Block numbers in each layer.
|
|
use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True.
|
|
"""
|
|
|
|
def __init__(self, block, layers, use_se=True):
|
|
if block == "IRBlock":
|
|
block = IRBlock
|
|
self.inplanes = 64
|
|
self.use_se = use_se
|
|
super(ResNetArcFace, self).__init__()
|
|
|
|
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.prelu = nn.PReLU()
|
|
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
self.layer1 = self._make_layer(block, 64, layers[0])
|
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
|
self.bn4 = nn.BatchNorm2d(512)
|
|
self.dropout = nn.Dropout()
|
|
self.fc5 = nn.Linear(512 * 8 * 8, 512)
|
|
self.bn5 = nn.BatchNorm1d(512)
|
|
|
|
# initialization
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.xavier_normal_(m.weight)
|
|
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.xavier_normal_(m.weight)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def _make_layer(self, block, planes, num_blocks, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(
|
|
self.inplanes,
|
|
planes * block.expansion,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False,
|
|
),
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
)
|
|
layers = []
|
|
layers.append(
|
|
block(self.inplanes, planes, stride, downsample, use_se=self.use_se)
|
|
)
|
|
self.inplanes = planes
|
|
for _ in range(1, num_blocks):
|
|
layers.append(block(self.inplanes, planes, use_se=self.use_se))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.prelu(x)
|
|
x = self.maxpool(x)
|
|
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
x = self.bn4(x)
|
|
x = self.dropout(x)
|
|
x = x.view(x.size(0), -1)
|
|
x = self.fc5(x)
|
|
x = self.bn5(x)
|
|
|
|
return x
|